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ABSTRACT

For the traction boundary value problem in nonlinear elastostatics

for a body which is convex in its undeformed reference state and with the

assumption of sufficiently small strains (but not necessarily small dis-

placement gradients), an upper bound is obtained for the elastic strain

energy in terms of the L2 -integral norms of the surface tractions and body

forces with the constant depending only upon the ratio of the outer and

inner diameters and the physical constants of the material.

This result extends previous known results in linear elasticity

(infinitesimal displacement gradients) and finite elasticity (small but

finite displacement gradients) into the small strain theory of nonlinear

elasticity.
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SIGNIFICANCE AND EXPLANATION

Suppose that an elastic body is in a natural stress-free state and is

then deformed by the action of applied surface tractions and internal body:

forces. This situation is described mathematically by a set of highl.

complex nonlinear partial differential equations.

In order to simplify the equations, it is often assumed that, with the

possible exception of a rigid body motion, each point in the undeformed

body has been displaced only an infinitesimal amount (linear elasticit'.,') or,

more generally, by a finite but small amount (finite elasticity).

However, there are many situations in which points in the body undergo

relatively large displacements, all of which can not be included in a single

rigid motion of the body, and yet the strains produced are relatively small.

This is true for example in the case of long thin bodies.

Therefore, it is desirable to obtain results using only the assumption

that the strains are small (but finite) while the displacements and displace-

ment gradients are relatively large. In the present research, an upper

bound for the energy in the body in terms of the surface tractions and body

forces is obtained using only the small strain assumption whereas previous

similar results had been obtaine-d under the assumptions of linear or finite

elasticity. This result is therefore applicable in many cases where the

previous results were not. DOC Buff Section 0
UNANNOUNCED 13
JUSTIFICATION
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AN INTEGRAL BOUND ON THE STRAIN ENERGY FOR THE TRACTION

PROBLEM IN NONLINEAR ELASTICITY WITH SMALL STRAINS

Joseph J. Roseman*

1. INTRODUCTION.

An elastic isotropic and homogeneous body is assumed to possess a natural stress-

free state in which it occupies a convex domain V C E 
3
. It is then subjected to the

combined action of applied surface tractions and internal body forces and arrives at

a new equilibrium state in a domain V. Using standard equations of nonlinear elasto-

statics and working in the context of small strain theory, we shall derive an estimate

for the strain energy in the deformed body in terms of the L 2 integral norms of tle

surface tractions and the body forces with the constants involved depending upon the

material properties and upon the geometry of the domain. The estimate is similar to

one previously obtained by Bramble and Payne (1) in the context of linear elasticity

and by Breuer and Roseman [2] in the context of finite elasticity.

The theory of mathematical elastostatics (cf. (31, (41) assumes that the deforma-

tion from DR to D can be described mathematically as a smcoth one to one mapping

from the domain D onto the domain D and that there is a relation between the
R

geometric strain associated with the mapping and the stress in the deformed state.

The fact that the deformed body is in equilibrium imposes conditions on the stress

tensor which in turn leads to a set of second order nonlinear elliptic partial differ-

ential equations for the mapping vector function. These equations, together with the

known conditions at the boundary, constitute an elliptic boundary value problem.

The equations of classical linear elastostatics are obtained by a linearization

of this nonlinear system, a linearization which is, in effect, equivalent to treating
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the derivatives of the displacement vector (the dist lacement 1. inq the liff,,ren..

between the position of a point in 0 and its former position in Pr) a infinitesi-

mally small quantities. In theory, therefore, the equations of linear tlasticit:..

describe the physical model only for infinitesimally small motions, although experience

has shown that they give good results in many applications.

In the theory of finite elasticity, it is assumed that the displacement gradients

are sufficiently small, depending upon the geometry of the body and the material con-

stants, but not infinitesimal. Finite elasticity should therefore provide a more accu-

rate mathematical description of the physical model than linear elasticity and results

in finite elasticity theory concerning existence, uniqueness and continuous dependence

on the given data would, at the least, be valid wherever linear elasticity results are

valid.

However, as Fritz John [51 points out, in practice it is possible to have small

strains and relatively large displacement gradients, especially in thin rods or shells

(indicating large relative "rotation" of different parts of the body). Thus, it would

be especially meaningful to obtain results based on the nonlinear equations assuming

only that the strains are sufficiently small (but not infinitesimal), while the dis-

placement gradients are bounded but are permitted to be large in comparison with the

strains. That is what is done in this paper.

The techniques employed here are a refinement of those used in 121 and can be

extended in a straightforward manner to non-isotropic and non-homogeneous bodies. The

convexity requirement on V R is imposed in order to ensure the applicability of some

work of F. John [61, 171 on the relationship between rotation and strain and can be

relaxed somewhat.

Other results concerning bounds for the strain energy in elastostatics in terms of

the given data include [1], [81, [91, 10] in linear elasticity, 121, [111, 1121 in finite

elasticity, and [13] forthe displacement boundary value problem in nonlinear elasticity

with small strains.* A description of some of the above mentioned results is given in [141.

*In both 1131 and 1141, the results in [131 are described as being within the framework
of finite elasticity. However, the analysis in 1131 actually requires only an a priori
assumption of small strains within the elastic body.
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2. PRELIMINARIES.

In the ahence of surface tractions or internal body forces, an isotropic, homo-

geneous elastic body occupies a convex domain R C E
3  

with inner and outer diameters

d and D respectively and with a boundary, R which is at least smooth enough for

the application of the divergence theorem. tinder the action of a system of known body

forces and surface tractions, R is mapped onto a domain V with boundary ',V withR

a point (x ,x2 ,x3 ) in V R being taken to the point (ylY 2, y3) in D. After defor-

mation, the body is in static equilibrium and the mapping from VR  to V is assumed

to be one to one ind sufficiently smootn.

The displacement vector u. is definel asi

ui =yi - xi (2.1)

and, since the mapping is one to one, u. may be regarded as a function of either

(xlx 2 ,x 3 ) or (yly 2,y3 ).

We next define*

Yi u.

ik ax k ik x
Pi k =  < (2.2)

ik (2.3)
p Yk

gik= PjiPjk = gki (2.4)

pik 
k  

= ki (2.5)

ikThe tensors p ik and p are, respectively, the covariant and contravariant

tensors, and g are the covariant and contravariant metric tensors, and Siktensos, gk

is the Kronecker delta (identity tensor).

*Tensor notation is used throughout the paper and all indices may take on the values

1, 2 and 3. The summation convention is followed so that a repeated index in any term

is summed over all values of the index. The magnitudes of a (real) vector v. and

matrix bik are defined here as v= r viv. and IbI = b

-3-
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We have the relations

13 j , k =. '

k =  ij = ik

and
ij jk , . )

g gjk = gij
g  

= ik

There are several definitions in the literature for the strain tensor In nonlin.Ir

elasticity. One of the more common, which we shall use here, is

1

eik = (9ik - ik (2" )

From (2.2) and (2.4), this is eqiivalent to

I u. 3u k u. u.e = + 5 + (2.9)
ik 2 3x k x Ix i

or, in terms of yi coordinates,

1 i u iuk  u. )u. 9u. ,Iuk  lu 3u
e(y = - k k- +--3 (2.11)

elk 2 --- + - + Pmk y 
+

y mi y PjiPk ")i)m j m "j j m

The mediun is assumed to be hyperelastic, i.e. it possesses a positive definite

strain energy density function W = W(e) which has the properties that for every

G C V whose undeformed preimage is GR C DR, the strain energy in G, U(G), is

given by

U(G) = fff W(e)dxdx 2dx 3  (2.11)

GR

and

W(e) = ekeik + e eie + O(e ) , (2.12)
i k 2 iiekk

where O(e 
3
) is a smooth term of order of magnitude lel

3  
with a derivative of order

lei
2  

fox small lei and X and p are positive material constants.

tn addition, there exist material constants m and M such that

mie1 2 
_ W(e) _ MIe 2  

(2.13)

if lei is sufficiently small.

-4-
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The stress at any point in 0 is represented by the Cauchy stress tensor 7
ik

which has the property that for any differential surface element dS in P with arut

normal vector v k' the components of force on this element are TikvkdS.

The body in the deformed state is in equilibrium under the action of the body

forces per unit volume F. and surface tractions (force/area) T.1 1

The tensor Tik satisfies the equations

y- .-F,, Yi C D 
(.14a)

and the boundary conditions

n= Ti, Yi E 30 , (2.141,)Tiknk i 1

where n. is the outward unit normal to V.
i

The existence of the strain energy density function W(e) implies the followinq

relation between Tik and e k:

i I W(e) (21aTik de" p ' km -- -- ' i.5

(cf. Stoker (3, pp. 10-14])or, from (2.4) and (2.8),

I W(e)ik det(p) in (2.15b)

Equation (2.15b) shows that the tensor Tik is symmetric (because e ik is

symnetric) .

For the problem considered here, it is assumed a priori that,throughout 0, :e:

is sufficiently small with respect to the geometry of DR and the material constants;

more precisely we assume that

ej _ 6 d21)

with 6 sufficiently small depending upon the material.

However, the only restrictions that we require on the displacement gradients art

that the mapping from DR  to V be one-to-one, that the magnitudes of the matrices

-5-



ik ik
Pik' p , ik and g and their determinants be less than or equal to two in

absolute value, and that D satisfy some mild geometric requirements, which are stated

in the theorem below.

-6-



3. THE ENERGY BOUND.

We now state the main theorem: Consider an elastic, isotropic body which possesses

a stress-free reference state in which it is homogeneous an! occupies a convex domain

3
R C E with inner and outer diameters d ind 5 respectivelv. Suppose that the boiy
R

is subjected to internal and external forces and reaches a state of static equilibrium

in which it occupies a domain [ with internal bed7 forces F. (force/unit volume)

throughout V and surface tractionF T (force/unit area) on 0, the bo.uniary' of 0.1

Assume that each point (x ,x ,x in . is mapped to a -oint (: ,,' ) in

in a smooth, one to one manner, that the maqnitudes of the covariant ani -omtra-

variant Jacobian and metric matrix-s and the determinants of these matric, :- aro *.ouni

in absolute value at every point by two, and that the strain matrix satisfies (2.lt .

Suppose that IV has continuous curvature with maximum principal :urvatur, not

greater than 32/d and that at every point on T there exists a sphere of radiu; 1/(64

which is tangent to the surface at the point and whose interior lies entirel: witlin

V. In addition, there exists a point in 19, which is taken to 1e the nriqin, witP th.

properties that the interior of the sphere yy i = 7 - is contained in 0' and

> for all (yly 2 ,'Y 3 ) on V, where n. is the outward unit normal

vector.

Assume that there exists a strain energy density function for the material which

satisfies the relations (2.12) and (2.13).

Then, if (Equation (2.16)) is sufficiently small with respect to the material

constants, the total elastic energy of the body U(P) satisfies the inequality

u(V) - BdD(Da [fIIl 2  . - IT12 , (3.1)

where

i) IIFIJ is the L2 integral norm of FI over 1,

ii) JJTJt is the L2 integral norm of ITt over

iii) q is a sufficiently large positive universal constant, and

iv) B is a constant which depends only upon the physical constants of the

material.

-7- 'I



The rest of Section 3 consists of the proof of this result. Throughout

following, all constants denoted by K. are universal, while those denoted -
depend also upon the material constants.

We begin by noting that, because of (2.12), (2.13) and (2.15), and because o t

-l -i
fact that the magnitudes and determinants of p, p , g, and g are uniformi:

bounded, that the integrals over either V or V of the expressions W(e),
R

ik~ik' and Tikeik are all of the same order of magnitude in the sense that an'*

is bounded in terms of any other with the constant depending only upon the material

constants. We also see that

3

We now call attention to the fact that if the deformed body were now subjected to

any rigid body motion (that is, any combination of translations and rotations), the

magnitude of the strain tensor e at any point as it moves with the body would remain

invariant and so would the magnitude of the stress tensor T, the st:ain energy -(W),

and the integral norms of the body forces and the surface tractions (cf. (15, pp.

127-1281). Therefore, since all the quantities of interest in (3.1) are unaffected,

we shall assume that a rigid motion has already taken place and has been included in

the mapping from V to VR" The rigid motion has been chosen so that the body is in
R'

what we consider to be a convenient orientation, as will be explained below.

The papers of Fritz John f6], (7], on the relationship between rotation and strain

imply that if the quantity 6 in (2.16) is sufficiently small, the body may be rigidlY

rotated to a position in which an inequality of the following type is valid:

au. au. 
3

ff I d x dx 11y fffe e dx dx .x (3.3)
D Xk 1 2 3 -ld 317R 1 2 3

Such a position is one to which we have referred as convenient in the paragraph above.

-8-
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We note that the integrand on the right side of (3.3) is invariant under a:. 'rr:. -

lations and rotations while the integrand on the left depends upon the orientat2r. C

the body.

-i
Because of the bounds on p and p , we also have

fff-Y--' dyldy2dy3 
- 2 - If1 eieikd ld 2dY3, 

ly k k 123 d 3V i

and, from the remarks in the paragraph preceding (3.2),

)u. 3u. 3
fff 1yd 0 Tkkdyld~ ~ (3.5)

)y - dy1 dy2dy3 
<  

3 13  ff .Y3
k k d D

From this point on, we shall use dVx, dS , dv and dS to denote differentialx y y

volume and surface elements in V and V.
R

From (2.10) and from the fact that Tik is a symmetric tensor, it follows that

;u.f = fff T dVff -ikikdvy :/ik yk y

3u. ;u.
+ ffr PkT ik )ym -yj dv (3.6)

D ~ m j

lu 3u

n n

Using the divergence theorem and noting (2.14), we obtain

1ff ik.eikdVy = fff FiuidVy + ff TiuidSy

au. au.

fff p T - dV (3.7)

au u+Ifff Pj~ T n n dV
2 V mk ik ayj Ym y

-9-
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Now, we have, from (3.2) and (3.5), that

'u. ?u. :u. u.
tff ?mki Iv dS3ik .j . <:mk ik . ,

3 "u. 3u.
C _3 : -I I--- - ?dV (3.8)

_ " " :k 
1
k Y

- 3 "-7 dVk.C 3 ikeik d..

Simi larly,

3u u

PfJfpPkik Y -3Ym dV y ff 7 ikeikdVy (3.9)

Thus, for sufficiently small , the sum of the last two terms on the right side

of (3.7) is less than - ifff e dv and therefore
2v ik ik y

-fff dV y < fff 
" 
dV + ff TiuidS (3.10)

2 ~ DV ikV - D

Since the body is in equilibrium, the surface tractions and body forces satisfy

the consistency relations (see [15], pp. 127-128)

ff T.dS + fff F.dV = 0 , ((3.11a)

ff (y iT k- YkTi)dS y+ rrr -y k 0 .(3.11b)
i yi y D • y

The first equation above expresses the vanishing of the resultant force, while the

second expresses the vanishing of the resulting moment in the deformed body.

We now define

vi = ui + a ijyj + (3i  (3.12)

where ai. is a real constant anti-symmetric tensor (a ik = -aki ) and 'i is a

constant vector, both of which will be chosen later.

From the relations (3.11) we see that

fff F~u~dV + Jf TudSy = fff F~v~dV + Jf T.v.dS ,(3.13)

Vi ~ y VV I Iiy y

and then, from the Cauchy-Schwarz inequality, we obtain

-10-
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f u udy + f TuidSy < Iff/ i F ivb H d j F.F d ff Vivi '%d (3.14)

+ ff TTdS 1  ff viv.dS •

Combination of (3.14) and (3.10) yields

fff 'ikei)'Y -  ['ff, J..d fff F Fddr V d, ] (3.15)

+ 2 [ if T.T~dS 1, [[ff v. v. dS
S y' ii

1

We now recall from the statement of the theorem that yin k - on
12

and that the interior of the sphere , yiy = d is contained in V. text we

refer to the work of Bramble and Payne (11 who proved that if the coefficients -ik

and S. are chosen such that

ff v.dS /f (viy. - vyi )dS = 0 , (3.16)
E z X

then, for a sufficiently large universal constant q

ff v~v~dSy C 5d(- fff' W( )dv , (3. 17a)

and

62 q +1

fff v~v~dVy C d (a fff iW()dV , (3.171))

where

1 vi k+ (3.18a)
ik :2 k 1 I

and

W(O) = tieik ik + "ii'kk (3.18b)

The quantities e ik and W(E) represent, respectively, the linearized strain and the

corresponding linearized energy density function. we note that

W1(0) _ (i + I )fii k (3.19)
2 ik ik

From (3.12), we see that

ik 1( (3.20)
ik _yk 1Y-

-Ii-



and then, from (3.20) and (2.10),

1 u 3 u ,u " un "I
e 3u. -u -~ k 1 *e =e p 1  

pri .. 2 -,y -pp !ik ik 2 mk Zy 2 jivmkmj :j

"u.
The elements of pi and are uniformly bounded and the tensor -

satisfies (3.5). Therefore,

ff ik ik y' d f lik ik
D ~ d

3

and, from (3.19),

fff W(e)dv <C 23fff . e i dv y
Dd ikik0

With q2 
= ql + 3, Equations (3.23) and (3.17) imply that

f7 vividSy < C9d(D) q 2 
ff ieidv , ( .24a)

and

SvdVy <10C 2 q2+ T ikeikdVy (3.24b)

Combining (3.24) with (3.15), we obtain

q2 
+ 1  

q 2

*Iff TikeikdV < 2 C d( 2 1F 11 + 22 (ITI
•  (3.25)

D i d Y L 10 '2 '' 9/ l

Finally, the remarks in the paragraph preceding (3.2) imply that there exists a

constant CI1 such that

u(D) < Cll fiS T ik eik dVy ,(3.26)

and then (3.25) and (3.26) lead to the desired result, Equation (3.1).

-12-
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4. SOME ADDITIONAL REMARKS.

As stated earlier in Section 1, the techniques used here are also applica!lc tc

non-isotropic and non-homogeneous bodies and the restriction here to a homogeneous

isotropic body was only for the purpose of simplifying the presentation. The convexlt*i

assumption on VR can also be relaxed somewhat; the important thing is that the dorain

be such that it is possible to obtain an inequality of the form (3.3) b-., an approrriate

rotation. (See 16], [71 for a discussion of the factors involved).

ACKNOWLEDGMENT: Part of the research was done at the University of Delaware, V:athematicc

Department, Newark, Delaware, during the summer of 1979 and the rest during 1979-1980,

while on leave of absence at the University of Wisconsin.

-13-



1. J. H. Bramble and L. E. Pa,.-ne, Some ineqIaliti<" fiDr .(cto; functions wit. an:-ljca-

tions in elasticity. Archive for Rational Y.echanic3 and Anal/sis 11, 1E (19C2).

2. S. Breuer and J. J. Roseman, Integral bounds on the strain energy for the traction

problem in finite elasticity. Archive for Rational >Iechanics and Anai.ysis 68,

333 (1978).

3. J. J. Stoker, Topics in Nonlinear Elasticity. New York UIniversity, Courant Institute

of Mathematical Sciences Lecture Notes (1964).

4. V. V. Novozhilov, Theory of Elasticity (translated by J. K. Lusher). Pergamon

Press (1961).

5. F. John, A priori estimates, geometric effects and asymptotic behavior. Bulletin

of the American Mathematical Society 81, 1013 (1975).

6. F. John, Rotation and strain. Comm. Pure Appl. .ath. 14, 391 (1961).

7. F. John, Bounds for deformations in terms of average strains, in Inequalities, III

(Edited by 0. Shisha), p. 129, Academic Press (1972).

8. J. H. Bramble and L. E. Payne, A priori bounds in the first boundary value problem

in elasticity. J. of Research of the National Bureau of Standards, Section B 65B,

269 (1961).

9. A. Dou, Upper estimate of the potential elastic energy of a cylinder. Comm. Pure

Appl. Math. 19, 83 (1966).

10. A. Gutierrez, A bound on the elastic potential energy of a cylinder with square

cross-section. Rev. Real Acad. Ci. Exact. Fis. Natur. Madrid 70, 549 (1976).

11. M. Aron and J. J. Roseman, Integral estimates for the displacement and strain energy

in nonlinear elasticity in terms of the body force. International J. of Eng. Science

15, 317 (1977).

12. S. Breuer and J. J. Roseman, A bound on tle strain energy for the traction problem

in finite elasticity with localized non-zero surface data. J. of Elasticity, to

appear.

-14-



13. S. Breuer and J. J. Roseman, An integral bound for the strain energy in nonlinear

elasticity in terms of the boundary displacements. J. of Elasticity 9, 21 (1979).

14. J. J. Roseman, Integral bounds for the strain energy in terms of surface tractions

or displacements and body forces in finite elastostatics, in Transactions of the

25th Conference of Army Mathematicians, ARO Report 80-1, p. 447, U. S. Army

Research Office, North Carolina (1980).

15. C. Truesdell and W. Noll, The Nonlinear Field Theories of echanics, in Handbuch

der Physik, 111/3, p. 1, Springer-Verlag (1965).

JJR:ed

-15-



SECURITY CLASSIFICATION OF THIS PAGE (1Wern Date Entered)

REPORT DOCUMENTATION PAGE REAl) INSTRUCTIONSBEFORF COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPILNT'S CATALOG NUMBER

2060

4. TITLE (andSubtitle) 5. TYPE OF REPORT & PERIOD COVERED

AN INTEGRAL BOUND ON THE STRAIN ENERGY FOR THE Summary Report - no specific
TRACTION PROBLEM IN NONLINEAR ELASTICITY WITH reportinq period
SMALL STRAINS 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(&) B. CONTRACT OR GRANT NUMBER(@)

DAAG29-76-G-0102
Joseph J. Roseman DAAGZ9-7 5-C-0024

DAAG29-80-C-0041
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT TASK

Mathematics Research Center, University of AREA & WORK UNIT NUMBERS

610 Walnut Street Wisconsin Work Unit Number 2 -

Madison, Wisconsin 53706 Physical Mathematics
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Research Office April 1980
P.O. Box 12I1l 13. NUMBER OF PAGES

Research Triangle Park. North Carolina 27709 15
14. MONITORING IGENCY NAME & ADDRESS(lf different from Controlling Offie.) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
15a. DECLASSIFICATION' DOWNGRADING

SCHEDULE

16. DISTR BUTION STATEMENT (of thle Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ebetract entered In Block 20, It different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide if necessary aid Identify by block number)

Nonlinear elastostatics, strain energy bound

O. ABSTIRACT (Continue an Peveree oide If neceeemy and Identify by block number)

For the traction boundary value problem in nonlinear elastostatics for a
body which is convex in its undeformed reference state and with the assumption
of sufficiently small strains (but not necessarily small displacement gradients),
an upper bound is obtained for the elastic strain energy in terms of theLintegral norms of the surface tractions and body forces with the constant 2
depending only upon the ratio of the outer and inner diameters and the physical
constants of the material. (continuied)

DD 1473 £OT,7it OF I NOV1, IS OS SOLIT UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Does Zate



ABSTRACT (continued)

This result extends previous known results in linear elasticity (infinitesimal
displacement gradients) and finite elasticity (small but finite displacement

gradients) into the small strain theory of nonlinear elasticity.

1 ,


